PRODUCT QUICK REFERENCE GUIDE

EKELTRON

RADIAL LEAD TYPE CAPACITORS SA, SE, SN, SZ, SH and SB Series

STRAIGHT LEAD

LEAD FORMED AND CUT

TAPED CAPACITORS

TAPED CODE TO (5 mm PITCH)

TAPED CODE T2 (2.5 mm PITCH)

TAPED CODE TO (5 mm PITCH)

FEATURES : GENERAL PURPOSE RADIAL TYPE FOR CONSUMER ELECTRONICS MARKET.

ENDURANCE:

+85°C, 2000 Hrs

REFERENCE STANDARDS : IS4317/ IEC 384-4.

PRODUCT MARKING PROVIDED WITH ORANGE COLOUR SLEEVE AND BLACK PRINT

■SPECIFICATIONS

PARAMETERS.	PERFORMANCE	CHA	RACTERIS	STICS										
Operating Temperature	- 40° C to +85 °C fo	or WV	≤250 Vdc,	-25°C to +	85°C for	WV > 25	60 Vdc.							
Working Voltage	6.3 Vdc to 450 Vdc	. (500	Wvdc on re	quest.)										
Capacitance Range	0.10 to 22000μF (a	t +270	C, 100 Hz)											
Capacitance Tolerance	±20%, (Other toler:	ance of	n request)											
Leakage Current (After 3mt charging through 1000 Ω resistor) IL in μ A	≤ 0.02 CV+ 10µA Where IL = Leakag	IL \leq 0.01 CV or 4 μ A, whichever is greater for WV 6.3 to 100 V \leq 0.02 CV+ 10 μ A for WV 160 to 500 V, Where IL = Leakage current in μ A C= Capacitance(μ F) , V= Working Voltage in Volt								Land				
Dissipation factor (Tan δ) Max (at + 27°C, 100 Hz)	WV Vdc	6.3	10	12	16	25	35	40	50	63	100	160	200	250 ~50
	Tan δ %	26	22	21	20	17	15	14	13	12	10	15	18	20
	For Capacitor ratin	gs with	h cap value :	>1000µF a	ld 2% fo	revery 10	000μF inc	rease						
Low Temperature Stability	Impedance Ratio at	t 100 F	Hz.										-	
	Rated Voltage (V)	T	6.3	10~12		16	25	35-	-40	50~100	160	2	00 ~350	400~500
	Z -25°C/Z + 27°C		6	4		4	3		3	2	3		6	7
	Z -40°C/Z + 27°C		12	9		8	6		1	3	4			-
T de man	Add 0.5 to the Rati	io for Z	Z- 25°C, 1.0	to the Rati	o Z- 40°0	Per 100	0μF, for C	ap>1000	μF					
Life Tests	Tests		1/4.	End	urance [C Life To	est				Storage	Shelf Lif	e Test	
(i). Endurance Test at High Temperature +85°C at WV.	Test Condition		At +85°C	r at rated v for 2000 H ments after	rs	/ to +27°C				Capacitor und At +85°C for Measurement	1000 Hrs		+27°C	
	Δ Capacitance	Within ± 30% for 6.3 to 16 V Within ± 25% for 25 to 100 V Within ± 20% for 160 to 500V Within ± 20% for 160 to 500V Within ± 20% for 160 to 500V								Within ± 25%	6 of initia	l measure	ed Value	
		A Capacitance Widin 1 25% for 25 to 150 .												
(ii). Storage Test at High Temperature +85°C at OV.	Tan ð									Within 150%	of initial	limit		

FEATURES: RADIAL TYPE HIGH TEMPERATURE
CATEGORY +105°C, FOR USE IN
SWITCHED MODE POWER SUPPLIES,
AUTOMOBILE ELECTRONIC CIRCUITS
AND INDUSTRIAL EQUIPMENTS.

REFERENCE STANDARDS: IS4317/ IEC 384-4.

ENDURANCE : +105°C, 1000 Hrs FOR DIAMETER < 8mm. + 105 °C, 2000 Hrs FOR DIAMETER \geq 8mm

PRODUCT MARKING

PROVIDED WITH ORANGE COLOUR SLEEVE AND BLACK PRINT

■SPECIFICATIONS

PARAMETERS.	PERFORMANCE CI	IARAC	TERISTIC	S									
Operating Temperature	- 40°C to +105°C for 1	NV ≤ 25	0 Vdc, -25	C to + 105	C for WV >	250 Vdc							
Working Voltage	6.3 Vdc to 450 Vdc.												
Capacitance Range	0.47μF to 10,000μF (a	t +27°C,	100 Hz)										
Capacitance Tolerance	±20%, (Other tolerance	±20%, (Other tolerance on request)											
Leakage Current (After 3mt charging through 1000 Ω resistor) IL in μ A	≤ 0.02 CV+ 4µA fo Where IL = Leakage c	IL \leq 0.01 CV or 4 μ A, whichever is greater for WV 6.3 to 100 V \leq 0.02 CV+ 4 μ A for WV 160 to 450 V, Where IL = Leakage current in μ A C= Capacitance (μ F), V= Working Voltage in Volt											
Dissipation factor (Tan δ) Max (at + 27°C, 100 Hz)	WV Vdc	6.3	10	16	25	35	40	50	63	100	160~200	250 ~450	
(11.2.5, 130.11)	Tan δ %	22	19	16	14	13	12	11	10	9	12	15	
	For Capacitor ratings	with cap	value >100	0μF add 29	for every 1	000μF in	crease						
Low Temperature Stability	Impedance Ratio at 10	0 Hz		-	41 1								
	Rated Voltage (V)		6.3	10	16	25		35	40-50	63~100	160~250	350~450	
	Z -25°C/Z +27°C		6	4	3	3		2	2	2	3	7	
	Z -40°C/Z + 27°C		12	- 8	6	5		4	3	3	4		
	Add 0.5 to the Ratio fo	or Z- 25°	C, 1.0 to th	e Ratio Z-	40°C Per 100	00μF, for	Cap>100	OμF					
Life Tests	Tests			Endurance DC Life Test						Storage Shelf Life Test			
		Capacitor at rated voltage Capacitor under r (For \emptyset < 8mm, 1000 Hrs +105 $^{\circ}$ C) At +105 $^{\circ}$ C for 10 (For \emptyset ≥ 8mm, 2000 Hrs +105 $^{\circ}$ C) Measurements after recovery to +27 $^{\circ}$ C Measurements af											
(i). Endurance Test at High Temperature +105°C at WV.	Test Condition	(For (Ø< 8mm, 10 Ø≥ 8mm, 20	000 Hrs +10 000 Hrs +10	15°C)			A	t +105°C fo	r 1000 Hrs			
at High Temperature	Condition	(For (For (Measi	Ø< 8mm, 10 Ø≥ 8mm, 20 urements af	000 Hrs +10 000 Hrs +10 fter recover	15°C)	lue		A	t +105°C fo leasurement	r 1000 Hrs	ery to +27°C		
(i). Endurance Test at High Temperature +105°C at WV. (ii). Storage Test at High Temperature +105°C at 0V.	Condition Parameters	(For (For (Meass))	Ø< 8mm, 10 Ø≥ 8mm, 20 urements at n ± 25% of	000 Hrs +10 000 Hrs +10 fter recover)5°C) y to +27°C	lue		A M	t +105°C fo leasurement	r 1000 Hrs ts after recove	ery to +27°C asured Value		

FEATURES : MINIATURE RADIAL NONPOLAR TYPE FOR AUDIO SIGNAL CIRCUITS.

ENDURANCE: 2000Hrs, +85°C

REFERENCE STANDARDS: IS4317/IEC 384-4

PRODUCT MARKING

PROVIDED WITH ORANGE COLOUR SLEEVE AND BLACK PRINT

SPECIFICATIONS

- 40° C to +85 ° C		PERFORMANCE CHARACTERISTICS										
6.3 Vdc to 100 Vd	le											
0.1μF to 2200μF	0.1μF to 2200μF											
±20%	±20%											
Where IL = Leaka	ige current in	μΑ	olt									
WV Vdc		6.3	0 10	,	25	40	50	63	100			
Tan δ %		26 2	4 22	2	20	15	14	12	10			
For Capacitor rati	ngs with cap v	value >1000μF ac	id 2% for every	1000μF in	crease	-						
	at 100 Hz.											
	6.3	10	16	25		40	50	63	100			
Z - 40°C /	10	8	6	5		4	4	3	3			
Add 1.0 to the Ra	tio Z- 40°C Pe	er 1000μF, for Ca	sp>1000μF						, C.			
Tests		End	urance DC Life	Test			Storage S	helf Life Test				
Test Condition Parameters	At +85 Polarit	5°C for 2000 Hrs. ty reversal after 1	000 Hrs			At +85°	C for 1000 Hrs	- 12				
Δ Capacitance Within \pm 20% of initial measured Value Within \pm 10% of initial measured Value												
Tan ð	Within	n 150% of initial	limit			Within	120% of initial l	imit				
D.C Leakage Curre	nt Within	n initial limit				Within	200% of initial l	imit				
	±20% IL ≤ 0.03 CV or 4 Where IL = Leaka C = Capacitance (WV Vdc Tan δ % For Capacitor rati Impedance Ratio Rated Voltage (V) Z - 40°C / Z + 27°C Add 1.0 to the Ra Tests Tests A Capacitance Tan ∂ D.C	#20% IL ≤ 0.03 CV or 4 μA, whicheve Where IL = Leakage current in C = Capacitance (μF), V = Work WV Vdc Tan δ % For Capacitor ratings with cap	±20% IL ≤ 0.03 CV or 4 μA, whichever is greater Where IL = Leakage current in μA C = Capacitance (μF), V = Working Voltage in Vo	±20% IL ≤ 0.03 CV or 4 μA, whichever is greater Where IL = Leakage current in μA C= Capacitance (μF), V= Working Voltage in Volt WV Vdc 6.3 10 10 Tan δ % 26 24 22 For Capacitor ratings with cap value >1000μF add 2% for every Impedance Ratio at 100 Hz. Rated Voltage (V) Z - 40°C / Z + 27°C Add 1.0 to the Ratio Z- 40°C Per 1000μF, for Cap>1000μF Tests Endurance DC Life Test Capacitor at rated voltage and At +85°C for 2000 Hrs. Polarity reversal after 1000 Hrs Measurements after recovery to +27°C Δ Capacitance Within ± 20% of initial limit D.C Within initial limit	### ### #############################	### ±20% IL \leq 0.03 CV or 4 μA, whichever is greater Where IL = Leakage current in μA C= Capacitance (μF), V= Working Voltage in Volt WV Vdc 6.3 10 16 25 Tan δ % 26 24 22 20 For Capacitor ratings with cap value > 1000μ F add 2% for every 1000μ F increase Impedance Ratio at 100 Hz. Rated Voltage (V) 6.3 10 16 25 Z - 40° C / $2 + 27^{\circ}$ C 10 8 6 5 Add 1.0 to the Ratio Z- 40° C Per 1000μ F, for Cap> 1000μ F Test Endurance DC Life Test Capacitor at rated voltage and A1 + 85° C for 2000 Hrs. Polarity reversal after 1000μ F Measurements after recovery to +27°C Δ Capacitance Within ± 20% of initial measured Value Tan ∂ Within 150% of initial limit	### ### #############################	### ### #############################	### ### #############################			

FEATURES : RADIAL LEAD TYPE WITH LOW ESR.

ENDURANCE: +85°C, 2000Hrs.

REFERENCE

STANDARDS : IS4317/ IEC 384-4.

MARKING

PROVIDED WITH ORANGE COLOUR SLEEVE AND BLACK PRINT

SPECIFICATIONS

PARAMETERS.	PERFORMANCE CI	HARACTERISTI	CS								
Operating Temperature	- 40° C to +85 °C										
Working Voltage	6.3 Vdc to 100 Vdc										
Capacitance Range	1.0 to 4700μF (at +27 ^c	1.0 to 4700μ F (at $+27^{0}$ C, 100 Hz)									
Capacitance Tolerance	±20% (other tolerance	±20% (other tolerance on request)									
Leakage Current (After 3mt charging through 1000 Ω resistor) IL in μ A	IL ≤ 0.006 CV +1μA Where IL = Leakage c C= Capacitance (μF),		ge in Volt	4							
Dissipation factor (Tan δ) Max (at +27°C, 100 Hz)	WV Vdc	6.3	10	16	25	35	50	63	100		
	Tan δ %	20	15	12	10	8	7	6	5		
	For Capacitor ratings v	with cap value >100	00μF add 2% f	or every 1000μ	F increase	L					
Low Temperature Stability	Impedance Ratio at 10	0 Hz.				_					
	Rated Voltage (V)	6.3		10	16	5	25 ~ 63	1	00		
	Z - 40°C / Z + 27°C	5		4	3		2		3		
	Add 1.0 to the Ratio Z	- 40°C Per 1000μF	, for Cap>1000	μF							
Life Tests			1								
	Tests		Endurance I	C Life Test			Storage She	If Life Test			
(i). Endurance Test at High Temperature + 85°C at WV.	Test Condition Parameters	Capacitor at rate At +85°C for 200 Measurements a	00 Hrs.) +27°C	П	At +85°C	r under no voltage for 1000 Hrs ments after recove				
	Δ Capacitance	Within ±20% of	initial measure	d Value		Within ±	10% of initial mea	asured Value			
(ii). Storage Test at High Temperature +85°C at 0V.	Tan ∂	Tan ∂ Within 200% of initial limit Within 130% of initial limit									
	D.C		nit			Within 2					

EKELTRON

ALUMINIUM ELECTROLYTIC CAPACITORS RADIAL LEAD TYPE

FEATURES: NONPOLAR RADIAL LEAD TYPE FOR HORIZONTAL DEFLECTION EQUALIZATION, IN TV RECEIVERS & VIDEO MONITOR DISLPAYS.

ENDURANCE: +85°C, 2000 Hrs

REFERENCE

STANDARDS: IS4317/ IEC 384-4.

PRODUCT MARKING PROVIDED WITH ORANGE COLOUR SLEEVE AND BLACK PRINT

■SPECIFICATIONS

PARAMETERS.	PERFORMANCE C	PERFORMANCE CHARACTERISTICS								
Operating Temperature	- 40°C to +85°C									
Working Voltage	25 Vdc and 50 Vdc	vde and 50 Vde								
Capacitance Range	1 to 18μF (at +27°C,	o 18μ F (at $+27^{0}$ C, 100 Hz)								
Capacitance Tolerance	±20%	0%								
Leakage Current (After 3mt charging in both direction through 1000 Ω resistor) IL in μ A										
Dissipation factor (Tan δ) Max (at + 27°C, 100 Hz)	4% (at 27°C, 100 Hz									
Life Tests										
	Tests	Endurance DC Life Test	Storage Shelf Life Test							
(i). Endurance Test at High Temperature +85°C at WV.	Test Condition	Capacitor at rated voltage and At +85°C for 2000 Hrs, Polarity reversal after 1000 Hrs Measurements after recovery to +27°C	Capacitor under no voltage At +85°C for 1000 Hrs Measurements after recovery to +27°C							
	Δ Capacitance	Within ± 15% of initial measured Value	Within ± 10% of initial measured Value							
(ii). Storage Test	Tan ∂	Within 200% of initial limit	Within 150% of initial limit							
at High Temperature +85°C at 0V.	D.C Leakage Current	Within initial limit	Within 200% of initial limit							

 $\begin{array}{c} {\sf FEATURES} \ : \ {\sf PROFESSIONAL} \ {\sf GRADE} \ {\sf LONG} \ {\sf LIFE} \\ {\sf RADIAL} \ {\sf LEAD} \ {\sf TYPE} \ {\sf FOR} \ {\sf DEFENCE} \end{array}$

APPLICATION

REFERANCE STANDARDS : JSS 50207 - CLU 07 STYLE

ENDURANCE: +85°C, 2000 Hrs

PRODUCT MARKING PROVIDED WITH ORANGE COLOUR SLEEVE AND BLACK PRINT

SPECIFICATIONS

PARAMETERS.	PERFORMANCE C	HARACTERISTICS		17,211 X 236 X X	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Operating Temperature	- 40°C to +85°C						
Working Voltage	6.3 Vdc to 63 Vdc.						
Capacitance Range	0.47 μF to 6800 μF (a	nt +27°C, 100Hz)					
Capacitance Tolerance	-10% to +50% (T) or	±20% (M) on request					
Leakage Current (After 5mt charging through 1000 Ω resistor) IL in μ A	and IL ≤ 0.006 CV + Where IL = Leakage						
Dissipation factor (Tan δ) Max at +27°C, 100Hz)	Cap in μF	wv	6.3 ~ 10V	16 - 25V	35 - 63V		
	≤ 470 μF		24	19	13		
	680 ~ 4700 μF		31	22	22		
	> 4700 μF		50	50	50		
Low Temperature Stability	<u> </u>	wv	6.3 ~ 1	0V	16 ~ 63 V		
	Z - 40°C	C / Z + 27°C	4		3		
	Impedance Ratio at 1	00 Hz.					
life Tests							
	Tests		Endurance DC Life Test		Storage Shelf Life test		
(i). Endurance Test at High Temperature +85°C at WV.	Test Condition Parameters	Capacitor at rated v At +85°C, for 2000 Measurements after		At +85°C	r under no voltage for 500 Hrs ments after recovery to +27°C		
	Δ Capacitance	Within ± 15% of th	e initial measured Value	Within ±	10% of initial measured Value		
ii). Storage Test at High Temperature	Tan ∂	Within 130% of ini	tial limit	Within I	20% of initial limit		
+85°C at 0V.	D.C Leakage Current	Within initial limit	ie" if I	Within 2	90% of initial limit		
	Impedance Change	Within 200% of ini Measured value at					
	Visual	No seepage of elect No damage of sleev		No seepa Solderab 85%	ige of electrolyte No. damage of sleeve. lity test to be passed with wetting above		
Stability test at high temperature (Measurements after recovery to + 27°C)	Δ Capacitance						
	Tan ∂	Within 130% of ini	tial measured Value				
	D.C Leakage current	Within 300% of ini	tial limit	14 To 1 To			
	Visual	No seepage of elect	trolyte. No damage of sleeve.				

EKELTRON

AXIAL LEAD TYPE CAPACITORS

DB / DC SERIES

FEATURES : GENERAL PURPOSE AXIAL TYPE

DB SERIES- MINIATURE AXIAL TYPE

DC SERIES- LARGE AXIAL TYPE

FOR DIAMETER ≥ 16 mm

REFERENCE

STANDARDS: IS4317/ IEC 384-4

ENDURANCE : $+85^{\circ}$ C, 2000 Hrs FOR DIAMETER < 8mm. $+85^{\circ}$ C, 3000 Hrs FOR DIAMETER ≥ 8mm.

PRODUCT MARKING

PROVIDED WITH ORANGE COLOUR SLEEVE AND BLACK PRINT

1. SPECIFICATIONS

PARAMETERS.	PERFORMANCE C	HARACTERIS	STICS							
Operating Temperature	- 40° C to +85 ° C for	WV ≤ 160 Vdc	& -25°C to +8	35°C for WV >	160 Vdc.					
Working Voltage	6.3 Vdc to 400 Vdc. (450 Vdc on requ	iest)							
Capacitance Range	1.0μF to 22,000μF (at	1.0μF to 22,000μF (at +27 ⁶ C, 100 Hz)								
Capacitance Tolerance	-10% +50% (Other to	-10% +50% (Other tolerance on request)								
Leakage Current (After 5mt charging through 1000 Ω resistor) IL in μ A	IL ≤ 0.01 CV or 3 μA • Where IL = Leakage C= Capacitance (μF),	current in μ A								
Dissipation factor (Tan δ) Max (at +27°C, 100 Hz)	WV Vdc	6.3	10	16	25	. 3	35-50	63~100	160-250	350 -400
	Tan δ %	24	20	17	15		12	10	12	13
	For Capacitor ratings	with cap value >	1000μF add .	2% for every 11	000μ F increa	se				
Low Temperature Stability	Impedance Ratio at 10	00 Hz.								
	Rated Voltage (V)	6.3	10	16	25	35	40~100	160~250	350	400
	Z-25°C / Z+27°C	5	3	3	2	2	2	3	6	7
	Z-40°C / Z+27°C	11	9	7	5	3	3	For 160\ 3		*
	Add 0.5 to the Ratio fo	or Z- 25°C, 1.0 t	o the Ratio Z-	40°C Per 100	0μF, for Cap:	-1000μF		•		
Life Tests	1									
	Tests		Endura	nce DC Life Te	st			Storage She	If Life Test	
(i). Endurance Test at High Temperature +85°C at WV.	Test Condition Parameters	Capacitor at r (For Ø< 8mm (For Ø≥ 8mm Measurement	, 2000 Hrs +8 , 3000 Hrs +8	(5°C)			At +85°C for	der no voltage 1000 Hrs its after recove		
	Δ Capacitance	Within ± 20%	of the initial	measured Valu	ne		Within ± 15%	6 of initial me	asured Value	
(ii). Storage Test at High Temperature +85°C at 0V.	Tan ∂	Within 200%	of initial limi				Within 150%	of initial limi	t	

DB/DC SERIES

2. PHYSICAL OUTLINE- DB/DC SERIES

All Dimensions in mm

3. **DIMENSIONS** (All units in mm)

Case code and Dimensional details of axial type DB/DC series capacitors in sleeved conditions are given below.

Case	e code	LL	LA	MA	NA	NR	PR	PS	FH	GH	HH	JH	KH
Diameter	Ø D ± 0.5	6.5	6.5	8	10	10	12,5	12.5	12.5	16	18	21	25
Length	L±1	13	18	18	18	25	26	32	38	40	40	40	40
Lead. Dia	Ø d ± 0.02	0.6	0.6	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8

AC MOTOR START CAPACITORS

MS SERIES

MD SERIES

MS SERIES: SINGLE ALUMINIUM CAN CONSTRUCTION MD SERIES: DOUBLE ALUMINIUM CAN CONSTRUCTION

Aluminium Electrolytic Motor start Capacitors Consisting of high purity Etched and Formed foil interlaced with condensor grade absorbant insulating paper soaked with electrolyte and are encapsulated in Aluminium Can. MS SERIES Capacitors are with rubber bakelite cover with vent and solder lugs used as terminals and are provided with green coloured sleeve. MD SERIES are MS Capacitors insulated in an outer Aluminium Can (Double Can Construction) and tinned copper wire with or without eyelets are provided to take out the connection.

The intended use is for generating starting torque in single-phase motor when connected in series with the starting coil of the motor and upon reaching near the synchronous speed the Capacitor is disconnected. The intended application is for intermittent duty cycle of 1.7%.

1. SPECIFICATIONS

Series	 (i) MS Series – Single can construction with green coloured sleeve. (ii) MD Series – Double can construction with outer Aluminium Can.
Туре	Aluminium Electrolytic Motor Start.
Reference Standard	IS 2993/ IEC 252
Operating Temperature	-30°C to +70°C
Working Voltage	(i) 110 AC Single phase 50/60 Hz (150 VAC surge) (ii) 230V AC Single phase 50/60 Hz (275 VAC surge) (iii) 330V AC Single phase 50/60 Hz (400 VAC surge)
Capacitance Range	$20\mu\text{F}$ to $280\mu\text{F}$ (Capacitance will be within specified limits of minimum and maximum value when measured at 27°C)
Power factor	Power factor shall be determined by recording current in amperes within 3 seconds after application of rated voltage and power in watts within 4 seconds after application of test voltage. Power factor shall not exceed 8% at rated voltage & frequency.
Duty cycle	20 starts per hour maximum. Each start shall be of not more than 3 seconds per 3 minutes duration at rated voltage confirming to 1.7% duty cycle. Other duty cycles are available on special request.
High voltage withstand Test	Capacitors shall be capable of withstanding without breakdown for 60 seconds a test between terminals and the case with 2000V sinusoidal AC Voltage of 50Hz. If the outer case is metal, the voltage is applied between the outer case and the terminals and if the outer case is insulating material a metal foil is wrapped tightly round the case and the voltage is applied between foil and terminals.

MS/MD SERIES

2. SCHEMATIC TEST SET UP FOR MEASURING CURRENT AND DETERMINATION OF POWER FACTOR AND CAPACITANCE:

Capacitance:

Capacitance shall be determined by recording current within 3 seconds after the application of rated voltage at temperature 27°C as per the schematic set up in figure 1.

$$C = \frac{I \times 10^6}{2 \times 3.14 \times f \times V}$$

Where $C = Capacitance in \mu F$

I = Current in Ampere f = Frequency in Hz

V = Applied line voltage.

Power Factor:

Power factor shall be determined by recording current in Amperes within 3 seconds and power in watts within 4 seconds after application of rated voltage in the setup in figure 1.

$$PF(\%) = \frac{P}{V \times I} \times 100$$

Where PF= Power Factor in %

P = Power in Watts

V = Applied Voltage in Volts

I = Current in Amperes

3. PHYSICAL OUTLINES - MS SERIES & MD SERIES

MS/MD SERIES

4. DIMENSIONS (All units in mm)

(a) MS Series

Case Code	Diameter D ± 1.0	Length L ± 2	Pitch P ± 0.2
CG	30	55	12
DG	35	55	14
DK	35	70	14
EK	40	70	16
EQ	40	100	16
FQ	45	100	18

(b) MD Series

Case Code	Diameter D ± 1.0	Length L ± 2
DL	35	75
EL	40	75
EP	40	95
FP	45	95
FS	45	125

EKELTRON

UL APPROVED MOTOR START CAPACITORS

MU Series

UL APPROVED CAPACITORS FOR USA AND CANADIAN MARKET

KELTRON MU Series Motor Start Capacitors have been investigated by UL India Pvt. Limited, a subsidiary of Underwriters Laboratories Inc. for the standards for safety 'UL 810 Standard for Capacitors' and 'Canadian standard C 22.2 No.190 for Capacitors'. All the MU series capacitors manufactured at Keltron bears component recognition mark for USA and Canadian market www. The manufacturing facility at KCCL is under 'FOLLOW UP SERVICE INSPECTION PLAN' of UL India Pvt. Ltd. They also carry out periodic review of the product file. The UL file for MU series capacitors is "CZDS2E251759."

MU series motor start capacitors are constructed using high purity etched & formed Aluminum foil interlaced with condensor grade absorbant insulating paper and then encapsulated in PHENOLIC CASING and sealed hermetically using rubber bakelite cover. Connections are taken out through solder tag and flexible PVC sheathed multistrand copper wire with SNAP-ON terminals.

The intended use is for generating starting torque in single-phase induction motors when connected in series with the starting coil of the motor. The intended application is for intermittent duty cycle of 1.7 %. Capacitors are supplied with or without mounting bracket as per customer requirement

1. SPECIFICATIONS

Series	MU series
Туре	Aluminium Electrolytic Motor Start.
Reference Standard	UL 810, C 22.2 No.190, EIA - 463 - B
Operating Temperature	-30° C to $+70^{\circ}$ C
Working Voltage	(i) 110 VAC Single phase 50/60 Hz (150 VAC surge) (ii) 230 VAC Single phase 50/60 Hz (275 VAC surge) (iii) 330 VAC Single phase 50/60 Hz (400 VAC surge)
Capacitance Range	$20\mu F$ to $552\mu F$ (Capacitance will be within specified limits of minimum and maximum value when measured at $+27^{0}C$)
Power factor	Power factor shall be determined by recording current in amperes within 3 seconds after application of rated voltage and power in watts within 4 seconds after application of test voltage. Power factor shall not exceed 10% of rated voltage & frequency.
Duty cycle	20 starts per hour maximum each start shall be of not more than 3 seconds per 3 minutes duration at rated Voltage confirming to 1.7% duty cycle. Other duty cycles are available on special request.
High voltage withstand Test	Capacitors shall be capable of withstanding the application of 2000 volts AC rms 50 Hz for 1 second between the terminals and a metal foil wrapped tightly surrounding the lateral surface of the PHENOLIC CASE with out breakdown or flash over

UL APPROVED CAPACITORS

2. SCHEMATIC TEST SET UP FOR MEASURING CURRENT AND DETERMINATION OF POWER FACTOR AND CAPACITANCE:

Capacitance:

Capacitance shall be determined by recording current within 3 seconds after the application of rated voltage at temperature 27°C as per the schematic set up in figure1.

$$C = \frac{I \times 10^{6}}{2 \times 3.14 \times f \times V}$$

Where $C = Capacitance in \mu F$ I = Current in Ampere

> f = Frequency in Hz V = Applied line voltage.

Power Factor:

Power factor shall be determined by recording current in Amperes within 3 seconds and power in watts within 4 seconds after application of rated voltage in the setup in figure 1.

$$PF(\%) = \frac{P}{V \times I} \times 100$$

Where PF= Power Factor in %

P = Power in Watts

V = Applied Voltage in Volts

I = Current in Amperes

3. PHYSICAL OUTLINE - MU SERIES

All Dimensions in mm

LARGE CAN ALUMINIUM ELECTROLYTIC CAPACITORS

MB Series Snap-in terminal type

ML Series Lug terminal type

MP Series Screw terminal type MB SERIES

FEATURES: GENERAL PURPOSE SNAP-IN TERMINAL TYPE

CAPACITORS RECOMMENDED FOR USE IN SWITCHED MODE POWER SUPPLIES, INDUSTRIAL AND ENTERTAINMENT ELECTRONIC SYSTEMS.

REFERENCE

STANDARDS : IS4317/ IEC 384-4

ENDURANCE: +85°C, 2000 Hrs

PRODUCT MARKING PROVIDED WITH ORANGE COLOUR SLEEVE AND BLACK PRINT

1. SPECIFICATIONS

PARAMETERS.	PERFORMANCE CHARACTERISTICS							
Operating Temperature	-40^{9} C to $+85^{9}$ C for WV ≤ 160 Vdc & -25^{9} C to $+85^{9}$ C for WV > 160 Vdc.							
Working Voltage	16 Vdc to 450 Vdc							
Capacitance Range	47μF to 33,000μF (at	+27º C, 100 Hz)						
Capacitance Tolerance	± 20%							
Leakage Current (After 5mt charging through 1000 Ω resistor) IL in μ A	IL≤3 √ (CV) Where IL = Leakage c C= Capacitance (µF).	current in μA V= Working Voltage in Volt						
Dissipation factor (Tan δ) Max (at +27°C, 100 Hz)	WV Vdc	16~25	35~63	100-160	200~250	350 ~450		
	Tan 8 %	20	16	12	11	10		
	For Capacitor ratings	with cap value >1000μF add 2%	for every 1000μF increa	ise				
Life Tests								
	Tests	Endurance		Storage Shelf Life Test				
(i). Endurance Test at High Temperature +85°C at WV.	Test Condition Parameters	Condition Capacitor at rated voltage And at +85°C for 2000 Hrs Measurements after recovery to +27°C Capacitor under no voltage At +85°C for 1000 Hrs Measurements after recovery to +27°C				27°C		
	Δ Capacitance	Within \pm 20% of the initial measured Value Within \pm 15% of initial measured Value				Value		
(ii). Storage Test at High Temperature +85°C at 0V.	Tan ∂	Within 200% of initial limit		Within 150	Within 150% of initial limit			
	D.C	Within initial limit			Within 150% of initial limit			

MB SERIES

2. PHYSICAL OUTLINE - MB SERIES

All dimensions in mm

3. DIMENSIONS (All units in mm)

Case	e code	AC	AD	BB	BC	BE	BF	CE	CF	CG	DG
Diameter	Ø D ± 0.5 (mm)	22	22	25	25	25	25	30	30	30	35
Length	L ± 2 (mm)	35	40	30	- 35	45	50	45	50	55	55
Pitch	P ± 0.1 (mm)	10	10	10	10	10	10	10	10	10	10

FEATURES: GENERAL PURPOSE LUG TERMINAL TYPE
CAPACITORS RECOMMENDED FOR USE IN
SWITCHED MODE POWER SUPPLIES, TELECOMMUNICATION & INDUSTRIAL SYSTEMS.

REFERENCE

STANDARDS: IS4317/ IEC 384-4

ENDURANCE: +85°C, 2000 Hrs

PRODUCT MARKING PROVIDED WITH GREEN COLOUR SLEEVE AND BLACK PRINT

1. SPECIFICATIONS

PARAMETERS.	PERFORMANCE CHARACTERISTICS										
Operating Temperature	- 40°C to +85°C for W	- 40°C to +85°C for WV ≤ 160 Vdc & -25°C to +85°C for WV > 160 Vdc.									
Working Voltage	16 Vdc to 450 Vdc.										
Capacitance Range	150μF to 1,00,000μF	(at +27°C, 100 H	lz)								
Capacitance Tolerance	± 20%										
Leakage Current (After 5mt charging through 1000 Ω resistor) IL in μ A	C= Capacitance (μ F), Note: For C \leq 2500 μ I	Section 1991									
Dissipation factor (Tan δ) Max (at +27°C, 100 Hz)	WV (V)	16	25	35	50	63	100	160-250	350 ~450		
	Tan δ %	50	40	35	30	25	20	22	25		
	For Capacitor ratings	with cap value >	10000μF, add 1	% for every 100	0μF increase						
Life Tests						- Valle states to					
	Tests		Endurance	DC Life Test			Storage S	helf Life Test			
(i). Endurance Test at High Temperature +85°C at WV.	Test Condition Parameters	Capacitor at rated voltage and At +85°C for 2000 Hrs. Measurements after recovery to +27°C Capacitor under no voltage At +85°C for 1000 Hrs Measurements after recovery to +27°C									
	Δ Capacitance	Within ± 30% for WV 16V to 25V Within ± 25% for WV 35V to 100V Within ± 20% for WV 160V to 450V of initial measured value									
(ii). Storage Test at High Temperature Tan ∂ Within 200% of initial limit +85°C at 0V.			Vithin 200% of initial limit Within I					0% of initial limit			
at High Temperature											

ML SERIES

2. PHYSICAL OUTLINE - ML SERIES

All dimensions in mm

3. **DIMENSIONS** (All units in mm)

Dimensions provided without sleeve. For sleeved dimensions add 1.0mm to the diameter and 2mm to the length of the capacitor.

Case code	CE	CG	DE	DG	DK	DQ	EK	EQ	FQ
Diameter ØD±1 (mm)	30	30	35	35	35	35	40	40	45
Length L ± 2 (mm)	45	55	45	55	70	100	70	100	100
Pitch P ± 0.5 (mm)	12	12	14	14	14	14	16	16	18

FEATURES : GENERAL PURPOSE SCREW TERMINAL TYPE. RECOMMENDED FOR USE IN TELE-COMMUNICATIONS AND INDUSTRIAL

SYSTEMS

REFERENCE STANDARDS : IS4317/ IEC 384-4

ENDURANCE: +85°C, FOR 2000 Hrs

PRODUCT MARKING

PROVIDED WITH GREEN COLOUR SLEEVE AND BLACK PRINT

1. SPECIFICATIONS

PARAMETERS.	PERFORMANCE CHARACTERISTICS												
Operating Temperature	- 40°C to +85°C for V	-40^{9} C to $+85^{9}$ C for WV ≤ 160 Vdc & -25^{9} C to $+85^{9}$ C for WV > 160 Vdc.											
Working Voltage	16 Vdc to 450 Vdc												
Capacitance Range	220 μF to 1,00,000μF	at +27° C, 10	0 Hz										
Capacitance Tolerance	± 20%												
Leakage Current (After 5mt charging through 1000 Ω resistor) IL in μA	C= Capacitance (μF) Note: For C ≤ 2500 μI	IL $\leq 3 \sqrt{\text{(CV)}}$ Where IL = Leakage current in μ A C= Capacitance (μ F), V= Working Voltage in Volt Note: For C $\leq 2500\mu$ F, the charging resistor for R= 1000 Ω For C> 2500 μ F, the charging resistor R = 2.5 /C											
Dissipation factor (Tan δ) Max					n δ at +27	°C, 100 H	z in perce	ntage					-
(To be measured in four wire Kelvin clip terminal Method)	Diameter in mm		25	35	50	63	100	160	200	250	350	400	450
	Ø 35	85	70	55	40	35	25	17	15	16	19	23	25
Note: The DF value indicated is the	Ø50	105	85	70	50	45	35	25	21	23	26	30	32
maximum value permitted. But the typical values will be lower than the above table.	Ø63	140	100	90	75	50	45	34	30	32	35	40	42
Life Tests	21-0-0-1												
	Tests Endurance DC Life Test Storage				Storage S	e Shelf Life Test							
(i). Endurance Test at High Temperature +85°C at WV.	Test Condition Parameters	Condition Capacitor at ratea voltage and At +85°C for 2000 Hrs At +85°C for 1000 Hrs Measurements after recovery to +27°C Measurements after recovery to +27°C					27°C						
	Δ Capacitance												
(ii). Storage Test at High Temperature +85°C at 0V.	Tan ð	Within 200	% of initial	limit				With	iin 150% (of initial li	ial limit		
	D.C Leakage Current												

MP SERIES

2. PHYSICAL OUT LINES - MP SERIES

Dimensions provided without sleeve. For sleeved dimensions add 1.0mm to the diameter and 2mm to the length of the capacitor.

All dimensions in mm

3. **DIMENSIONS** (All units in mm)

Case code	DG	DH	DM	DQ	GM	GQ	HQ
Diameter ØD±1 (mm)	35	35	35	35	50	50	63
Length L ± 2 (mm)	55	60	80	105	80	105	105
Pitch P ± 0.5 (mm)	12.5	12.5	12.5	12.5	22	22	28.5

KELCAP - LDC

POWER CAPACITOR - METALLIZED POLY PROPYLENE FILM SELF HEALING TYPE LIGHT DUTY - CYLINDRICAL CONSTRUCTION

KELCAP - LDC capacitors are light duty power factor correction capacitors of cylindrical aluminium can construction. Capacitors confirm to Indian standard IS 13340 -1993. Mounting clamp is fitted with nut and washer along with the capacitor. These capacitors are meant for light duty application and are mainly used for agriculture pump sets with a maximum of 5% harmonics withstand capability.

Voltage rating	440V/415V/3 phase/50Hz
Kvar rating	1 kvar - 10 kvar
Connection	Delta
Temperature class	-10°C to +55°C
Dielectric	MPP
Maximum over current	1.3 rated I
Peak inrush current	100 times rated I
Operational losses at dielectric level	≤ 0.20 W/kvar
Operational losses at termination including discharge resistor	≤ 0.45 W/kvar
Insulation level	3 KV
Installation	Indoor
Reference standard	IS 13340/1993, IS 13341/1992, IEC 60831-1(2002), IEC 60831-2(1995)
Mounting position	Any position except upside down
Mounting and earthing	Threaded stud with clamp
Protection and safety	Selfhealing, discharge resistor
Termination	Provided with wire

KELCAP-LDS

POWER CAPACITOR - METALLIZED POLY PROPYLENE FILM SELF HEALING TYPE LIGHT DUTY - SQUARE CAP CONSTRUCTION

KELCAP - LDS capacitors are light duty power factor correction capacitors of square cap construction. Capacitors confirm to Indian standard IS 13340 -1993. Mounting of capacitors are with the help of mounting stud. These capacitors are meant for light duty application and are mainly used for agriculture pump sets with a maximum of 5% harmonics withstand capability.

Voltage rating	440V/415V/3 phase/50Hz
Kvar rating	1 kvar - 10 kvar
Connection	Delta
Temperature class	-10°C to +55°C
Dielectric	MPP
Maximum over cu	rrent 1.3 rated I
Peak inrush curren	t 100 times rated I
Operational losses dielectric level	at ≤ 0.20 W/kvar
Operational losses termination includ discharge resistor	
Insulation level	3 KV
Installation	Indoor
Reference standard	IS 13340/1993, IS 13341/1992, IEC 60831-1(2002), IEC 60831-2(1995)
Mounting position	Any position except upside down
Mounting and eart	hing Stud mounting
Protection and safe	ety Self healing, discharge resistor
Termination	Provided with wire

KELCAP-IDC

POWER CAPACITOR - METALLIZED POLY PROPYLENE FILM SELF HEALING TYPE INDUSTRIAL DUTY - CYLINDRICAL CONSTRUCTION

KELCAP - IDC capacitors are industrial duty power factor correction capacitors of cylindrical aluminium can construction. Capacitors confirm to Indian standard IS 13340-1993. These capacitors are provided with explosion proof design. Mounting of capacitors are with the help of mounting stud. These capacitors are meant for standard duty PF correction in low voltage/medium voltage networks, lighting, small scale industries, machine shops and process industries with harmonics withstand capability of maximum 10%.

-	
Voltage rating	440V/415V/3 phase/50Hz
Kvar rating	1 kvar - 25 kvar
Connection	Delta
Temperature class	-10°C to +55°C
Dielectric	MPP
Maximum over current	1.3 rated I
Peak inrush current	150 times rated I
Operational losses at dielectric level	≤ 0.20 W/kvar
Operational losses at termination including discharge resistor	≤ 0.45 W/kvar
Insulation level	3 KV
Installation	Indoor
Reference standard	IS 13340/1993, IS 13341/1992, IEC 60831-1(2002), IEC 60831-2(1995)
Mounting position	Any position except upside down
Mounting and earthing	Threaded stud
Protection and safety	Provided with over pressure cut off device, self healing, discharge resistors and protection plastic cap
Termination	1-9 kvar fast on 'U' terminal, 10-25 kvar screw type connection

KELCAP-IDS

POWER CAPACITOR - METALLIZED POLY PROPYLENE FILM SELF HEALING TYPE INDUSTRIAL DUTY - SQUARE CAP CONSTRUCTION

KELCAP - IDS capacitors are industrial duty power factor correction capacitors of square cap construction. Capacitors confirm to Indian standard IS 13340 -1993. These capacitors are provided with explosion proof design. Mounting of capacitors are with the help of mounting stud. These capacitors are meant for standard duty PF correction in low voltage/medium voltage networks, lighting, small scale industries, machine shops and process industries with harmonics withstand capability of maximum 10%.

Voltage rating	440V/415V/3 phase/50Hz
Kvar rating	1 kvar - 25 kvar
Connection	Delta
Temperature class	-10°C to +55°C
Dielectric	MPP
Maximum over current	1.3 rated I
Peak inrush current	150 times rated I
Operational losses at dielectric level	≤ 0.20 W/kvar
Operational losses at termination including discharge resistor	≤ 0.45 W/kvar
Insulation level	3 KV
Installation	Indoor
Reference standard	IS 13340/1993, IS 13341/1992, IEC 60831-1(2002), IEC 60831-2(1995)
Mounting position	Vertical
Mounting and earthing	M8
Protection and safety	Provided with over pressure cut off device for 10 kvar and above, self healing, discharge resistors
Termination	1-4 kvar: wire, 5-9 kvar: M6 terminal, 10-25 kvar: M8 terminal

KELCAP - HDC

POWER CAPACITOR - METALLIZED POLY PROPYLENE FILM SELF HEALING TYPE HEAVY DUTY - CYLINDRICAL CONSTRUCTION

KELCAP - HDC capacitors are heavy duty power factor correction capacitors of cylindrical aluminium can construction. Capacitors confirm to Indian standard IS 13340 -1993. The capacitors are provided with explosion proof design. Mounting of capacitors are with the help of M12 mounting stud. These capacitors are meant for industries having fluctuating loads with 20% max harmonics such as chemical industries, pharmaceuticals, flour mills, process industries and food processing plants.

Voltage rating	440V/415V/3 phase/50Hz
Kvar rating	5 kvar - 25 kvar
Connection	Delta
Temperature class	-10°C to +55°C
Dielectric	MPP
Maximum over current	1.8 rated I
Peak inrush current	200 times rated I
Operational losses at dielectric level	≤ 0.20 W/kvar
Operational losses at termination including discharge resistor	≤ 0.45 W/kvar
Insulation level	3 KV
Installation	Indoor
Reference standard	IS 13340/1993, IS 13341/1992, IEC 60831-1(2002), IEC 60831-2(1995)
Mounting position	Vertical
Mounting and earthing	M12
Protection and safety	Provided with over pressure cut off device, self healing, discharge resistors
Termination	5-8 kvar fast on 'U' terminal, 10-25 kvar screw type connection

KELCAP - SHS

POWER CAPACITOR - METALLIZED POLY PROPYLENE FILM SELF HEALING TYPE SUPER HEAVY DUTY - SQUARE CAP CONSTRUCTION

KELCAP- SHS capacitors are super heavy duty power factor correction capacitors of square cap construction. Capacitors confirm to Indian standard IS 13340 -1993. The capacitors are provided with explosion proof design. Mounting is provided with the help of clamps attached to the capacitor body. These capacitors are meant for industries having fluctuating loads with 25% max harmonics such as rolling mills, cement plants, welding equipments, automobile industries, sugar plants and paper industries.

reclinical Specifications	·-
Voltage rating	440V/415V/3 phase/50Hz
Kvar rating	1 kvar - 25 kvar
Connection	Delta
Temperature class	-10°C to +55°C
Dielectric	MPP
Maximum over current	2 rated I
Peak inrush current	250 times rated I
Operational losses at dielectric level	≤ 0.20 W/kvar
Operational losses at termination including discharge resistor	≤ 0.45 W/kvar
Operational losses at termination including resistor & inductor coil	≤ 0.65 W/kvar
Insulation level	3 KV
Installation	Indoor
Reference standard	IS 13340/1993, IS 13341/1992, IEC 60831-1(2002), IEC 60831-2(1995)
Mounting position	Vertical
Mounting and earthing	M8
Protection and safety	Provided with over pressure cut off device for 3 kvar & above, self healing, discharge resistors
Termination	M8 terminal provided

